(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(+(x, y)) →+ *(minus(minus(minus(x))), minus(minus(minus(y))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0].
The pumping substitution is [x / +(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(+'(x, y)) → *'(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*'(x, y)) → +'(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(minus(x)) → x
minus(+'(x, y)) → *'(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*'(x, y)) → +'(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))
Types:
minus :: +':*' → +':*'
+' :: +':*' → +':*' → +':*'
*' :: +':*' → +':*' → +':*'
f :: +':*' → +':*'
hole_+':*'1_0 :: +':*'
gen_+':*'2_0 :: Nat → +':*'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
fThey will be analysed ascendingly in the following order:
minus < f
(8) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
+'(
x,
y)) →
*'(
minus(
minus(
minus(
x))),
minus(
minus(
minus(
y))))
minus(
*'(
x,
y)) →
+'(
minus(
minus(
minus(
x))),
minus(
minus(
minus(
y))))
f(
minus(
x)) →
minus(
minus(
minus(
f(
x))))
Types:
minus :: +':*' → +':*'
+' :: +':*' → +':*' → +':*'
*' :: +':*' → +':*' → +':*'
f :: +':*' → +':*'
hole_+':*'1_0 :: +':*'
gen_+':*'2_0 :: Nat → +':*'
Generator Equations:
gen_+':*'2_0(0) ⇔ hole_+':*'1_0
gen_+':*'2_0(+(x, 1)) ⇔ +'(hole_+':*'1_0, gen_+':*'2_0(x))
The following defined symbols remain to be analysed:
minus, f
They will be analysed ascendingly in the following order:
minus < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_+':*'2_0(
n4_0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
minus(gen_+':*'2_0(0))
Induction Step:
minus(gen_+':*'2_0(+(n4_0, 1))) →RΩ(1)
*'(minus(minus(minus(hole_+':*'1_0))), minus(minus(minus(gen_+':*'2_0(n4_0))))) →RΩ(1)
*'(minus(hole_+':*'1_0), minus(minus(minus(gen_+':*'2_0(n4_0))))) →IH
*'(minus(hole_+':*'1_0), minus(minus(*3_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
+'(
x,
y)) →
*'(
minus(
minus(
minus(
x))),
minus(
minus(
minus(
y))))
minus(
*'(
x,
y)) →
+'(
minus(
minus(
minus(
x))),
minus(
minus(
minus(
y))))
f(
minus(
x)) →
minus(
minus(
minus(
f(
x))))
Types:
minus :: +':*' → +':*'
+' :: +':*' → +':*' → +':*'
*' :: +':*' → +':*' → +':*'
f :: +':*' → +':*'
hole_+':*'1_0 :: +':*'
gen_+':*'2_0 :: Nat → +':*'
Lemmas:
minus(gen_+':*'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_+':*'2_0(0) ⇔ hole_+':*'1_0
gen_+':*'2_0(+(x, 1)) ⇔ +'(hole_+':*'1_0, gen_+':*'2_0(x))
The following defined symbols remain to be analysed:
f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
+'(
x,
y)) →
*'(
minus(
minus(
minus(
x))),
minus(
minus(
minus(
y))))
minus(
*'(
x,
y)) →
+'(
minus(
minus(
minus(
x))),
minus(
minus(
minus(
y))))
f(
minus(
x)) →
minus(
minus(
minus(
f(
x))))
Types:
minus :: +':*' → +':*'
+' :: +':*' → +':*' → +':*'
*' :: +':*' → +':*' → +':*'
f :: +':*' → +':*'
hole_+':*'1_0 :: +':*'
gen_+':*'2_0 :: Nat → +':*'
Lemmas:
minus(gen_+':*'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_+':*'2_0(0) ⇔ hole_+':*'1_0
gen_+':*'2_0(+(x, 1)) ⇔ +'(hole_+':*'1_0, gen_+':*'2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_+':*'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
+'(
x,
y)) →
*'(
minus(
minus(
minus(
x))),
minus(
minus(
minus(
y))))
minus(
*'(
x,
y)) →
+'(
minus(
minus(
minus(
x))),
minus(
minus(
minus(
y))))
f(
minus(
x)) →
minus(
minus(
minus(
f(
x))))
Types:
minus :: +':*' → +':*'
+' :: +':*' → +':*' → +':*'
*' :: +':*' → +':*' → +':*'
f :: +':*' → +':*'
hole_+':*'1_0 :: +':*'
gen_+':*'2_0 :: Nat → +':*'
Lemmas:
minus(gen_+':*'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_+':*'2_0(0) ⇔ hole_+':*'1_0
gen_+':*'2_0(+(x, 1)) ⇔ +'(hole_+':*'1_0, gen_+':*'2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_+':*'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(18) BOUNDS(n^1, INF)